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"AN IMAGE INTENSIFIER FOR ELECTRON MICROSCOPY OF POLYMERS"

1. INTRODUCTION

Radiation damage is a problem that severely limits the obser-
vation of polymer samples in the electron microscope. While beam
damage cannot be completely eliminated, the rate of damage can be

slowed, allowing some time for viewing and photographing.

1.1 Radiation Damage in Polymers

High energy electrons in the beam of a transmission electron
microscope are known (Vesely, et al, 1976) to cause degradation of
crystal structures in hydrocarbons. The interaction of such beam d
with specimens causes transfer of energy to the macromolecular
chains through many inelastic processes. Some bonds break and,
depending on the material, thereby create ions, radicals, crosslinks,
or broken chains. In polyethylene, alkyl radicals G—-CHZ-éH-CH2-9
are formed, and hydrogen gas is generated, resulting in the loss of
mass. Adjacent radicals then combine to form a crosslink which
strains the crystal and distorts the lattice, decreasing the degree
of order (Thomas. 1976). Polyoxymethylene and higher polyolefins
tend to decay by chain scission (Grubband Dlugosz, 1976) and, as a
consequence, form volatile monomer (Thomas, et al., 1970). These
energy transfers give rise to a temperature increase in the irradiated
area. This local heating promotes the escape of some low molecular
weight material produced by chain scission, and there is, as a result,
an increase of hydrocarbon concentration inside the microscope,
especially near the sample. The amount by which the vacuum is spoiled

depends on the gas evolution rate and the pumping speed of the vacuum




L.

3
-

system (Vesely, et al., 1976). Hydrocarbon gasses in the vicinity
of the specimen increase the deposition rate of a surface contami-
nation layer on {t.

Limitations on Electron Microscopy

All these radiation effects severely limit the length of time
the relatively undamaged sample can be viewed and photographed. The
extent of radiation damage is revealed by an intensity decrease in
diffraction maxima or a contrast decrease in the darkfield image.
The "crystal lifetime" of the polymer is determined as the time
elapsed during which the diffraction pattern degrades into a diffuse
halo (Thomas and Ast, 1974). From Figure 1, it is seen that this
time occurs when a plateau is reached after an initial exponential

decay of intensity (Grubb and Groves, 1971). However, much of the

intensity before the plateau is from electrons passing through an
already damaged crystal. To account for this, it has been determined
that an unacceptable amount of artifact diffraction occurs after 60%
of the "crystal lifetime' (Thomas and Ast, 1974). This additional
limitation reduces even further the already short time available for

observation.

1.3 Techniques for Reducing Radiation Damage

An often-used technique for obtaining electron micrographs from
radfation damage-sensitive specimens is the '"shooting blind" method.
In this technique, one region of the sample {s used for focussing
(and consequently destroyed), while a distant area is actually used
to make the photographic recording (White, 1975). This is advanta-
geous in that no specfal equipment is needed. However, there are

serfous drawbacks associated with this method. Any change in




specimen height will alter the focus producing unusable micrographs.
Also, since the region photographed is not observed beforehand, an

uninteresting image might be recorded.

An i{ncrease in accelerating voltage can reduce radiation damage §
by decreasing the ionization rate (Thomas, et al., 1970, Grubb and
Groves, 1971). But the quantum detection efficiency (QDE) of the
electron microscope plates decreases by almost a factor of 3 when
the voltage is increased from 100 kV to 1000 kV, a factor identical
to the decrease in damage rate (Thomas, et al., 1970). Therefore,

one-third additional electrons are needed to maintain photographic

quality. These extra electrons come at the expense of increased
damage to the specimen. Until the efficiency of the film emulsion
and phosphor screens are improved, there is little advantage to
using a high voltage wvhen examining thin polymer films (Thomas, et al.,
1970).

Since the ability of the radiation to produce free radicals and
crosslinks i{s linked to kinetics and thermal energy, it is reasonable

to expect that cooling the specimen should reduce the damage rate.

However, this advantage is diminished when dealing with polymers that
decay by chain scission such as polyoxymethylene (Grubb and Groves,
1971). Practical problems related to the microscope itself interfere
with this strategy, also.

All the previous techniques require a high electron flux through
the sample in order for observation, but what is needed i{s a device
that reduces the amount of electrons damaging the polymer while main-
taining an image bright enough for viewing. Such a device would in-
crease the polymer diffracting lifetime, thereby allowing for examina-
tion, focussing, and recording of an image with a flux of electrons

that would ordinarily be insufficient to detect with a phosphor screen.




2.1 Channel Electron Multiplier (CEM)
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2. IMAGE INTENSIFICATION

The channel electron multiplfer utili{zes the secondary electron
emisston phenomenon to achieve electron amplification. This device
{a a highly resiative glass cvlinder, internally coated with a
secondary electron emitting semiconductor. A uniform axial electro-
statfic ffeld fs created within the channel by applyving a potential
(typically 1000 volts) across both enda. When an electron enters
the channel, ft collides with the wall generating secondary electrons
which are then accelerated down the tube by the field. These even-
tually hit the wall causing an avalanche of electrona emerging from
the output end (Figure 2). These can then be observed electronically
with a collector or optically by placing a phosphor screen near the
output,

Problems with the CEM

When the gain exceeds 105. the effecta of {fon feedback become

fmportant. A multtplfed electron flux at the output mav produce

positively charged fons (depending on the residual gas pressure)
which are then accelerated toward the input by the fileld. There

they collide with the wall, generating mcore electrons, and thev, in

turn, are multiplied as they continue through the channel toward

the ocutput. This results {n a strong output pulse followed bv a
series of smaller pulses decreasing {n magnitude. To overcome this
effect, the channel can be curved, preventing the fons from acquiring
enough energy to produce gsecondary electrong by limiting the distance
they travel before hitting the wall (Eschard and Manlev, 1971),

The maximum gain achievable (approximately 108\ {s limited bv
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an effect due to space charge, which is the electrostatic charge of

the electron cloud itself. As the electrons approach the output,
the density of electrons in the cloud increases. This causes a
self-repulsion, driving the electrons to the wall before they have
acquired sufficient energy to create secondary electrons. There-
fore, the electron flux reaches a self-limiting saturation level.
Channel Electron Multiplier Array (CEMA)

The CEMA can be created by fusing millions of these short
(-1 mm), 25 p diameter channels together, parallel to each other.
This produces a plate that allows two-dimensional information to be
amplified. By mounting a phosphor screen (that is itself deposited
on a fiber optic substrate) just below the channel output, the
incident electron flux can be visualized optically. After proper
biasing, the CEMA would produce an intensified image through electron
multiplication. When placed in the viewing chamber of a transmission
electron microscope, it is possible to reduce the electron flux
through the sample, even while gaining an increase in image bright-
ness. As the electron flux incident on the sample is decreased,
there is a corresponding decrease in radiation damage to the sample.
Since the radiation damage rate is very low, there is now more time
available for focussing and photographing before the "60% crystal
lifetime" (Thomas and Ast, 1974) is reached.

Operation of the Image Intensifier

A problem remains in where to locate the channelplate. A pre-
viously employed method involves placing the intensifier beneath
the camera chamber (Thomas and Ast, 1973). This position allows for

normal operation of the microscope, but an externally mounted periscope

arrangement must be used to gight up the column and see the phosphor
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screen of the intensifier. A more compact arrangement would place
the CEMA in the space just above the regular phosphor screen of
the microscope. A front-silvered mirror is suspended below the

intensifier at the proper angle and thereby allows the output to

be seen through the normal viewing window. Photographs can also be
easily taken through this same window with a 35 mm camera externally
mounted on a tripod. Of course, the resolution of these photographs
is 1imited by the channel diameter and the percent of open area in
the plate (55Z). The best means of recording any image is by using

the existing camera system in the electron microscope. This was

accomplished by constructing a unique manipulator that can both

support the channelplate perpendicular to the beam when it is to be
used for focussing and then to rotate the CEMA into a vertical
position at the rear of the viewing chamber (Figure 3). The
manipulator can move the CEMA into this out-of-the-way position,

and then the standard photographic system of the microscope itself
can be used to make maximum resolution recordings directly froa the
electron beam itself. This mobility of the CEMA allows an unobstruct-
ed view of nearly the entire phosphor screen so that normal operation
of the microscope and camera can be accomplished. Since the electron
beam is at a very low intensity, micrographs are simply exposed for

a sufficiently long period of time to acquire the necessary number

of electrons to record a quality image.

2.5 Design of the Manipulator

The manipulator is designed so that it can be easily installed
and removed through the front window of a JEOL 100B electron micro-
scope. It is attached to the phosphor screen of the microscope with

4 screws at the rear of the chamber. A mechanical rotary feedthrough,
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2.6

replacing an unused rear window, connects to the manipulator via

a flexible shaft. This is geared to a vertical screw that drives
the rear of the channelplate up and down. The front of the plate

is attached in two places to a pivoting arm that allows the front

to swing forward while the back is raised. The arm motion releases
the front end of a mirror allowing it to slide down and lodge at an
angle designed to permit observation of the intensifier phosphor
screen (output). Reversing the direction of the feedthrough, lowers
the back of the plate and swings the arm nearly vertical, causing
the mirror to slide up and lie flat against the fiber optic substrate.
The rotation can be performed either manually with a geared knob or
with a motor. (In the work reported here, a motor was mounted out-
side the microscope and performed the position change in only 8
seconds. Travel up and down was limited by microswitches and ad-
justing screws which immedfately turned off the motor, stopping the
manipulator). The space limitation in the viewing chamber neces-
sitated the minimization of size, motion and the height of the
intensifier above the phosphor screen. Because of these basic
design considerations, the image intensifier and manipulator can be
easily adapted to fit most microscopes.

Significance of Image Intensifier

As discussed earlier, the advantage in using an intensifier is

due to the decreased radiation damage during focussing. During the

minute it takes to locate and focus an interesting area, the sample
receives enough electrons/cm2 to record 9 bright field micrographs
(Thomas and Ast, 1974). By using the CEMA for focussing, not only
the number of images recorded increases but the quality of them is

higher because the sample receives less damage during each exposure.




There are other intensification systems available commercially
that work as well as the channelplate system, but their cost is very
much higher (>$30,000 as opposed to $4,000). Therefore, unless
electronic processing o7 the image is needed, the more direct and
inexpensive channelplate should be used.

While this system is needed to reduce radiation damage in thin
polymer samples, it can also be used for morphological studies in
thicker samples. Even microscopy on metal samples can be improved

and made easier by allowing thicker samples to be observed.
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Figure Captions

Figure 1

Total intensity of diffracted electrons, J, for
polyethylene crystal. The values shown correspond to
an incident flux through samples 4 x 10~5 A/cm?.
(Thomas and Ast 1974).

Figure 2

A channel electron multiplier. The output flux
passes immediately to a phosphor screen for visual-
izatton. (See text for explanation). (Eschard and
Manley 1971).

Figure 3

A channel electron multiplier array (CEMA) and
its manipulator (see text for operation).

a) CEMA

b) vertical screw

c) pivoting arm

d) front-silvered mirror

e) limiting microswitches

f) phosphor screen deposited on fiber
optic substrate
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